Publications
Transcriptomic signature to oxidative stress exposure at the time of embryonic genome activation in bovine blastocysts.
- Date de publication : 2013-04-15
Référence
Cagnone GL, Sirard MA. Transcriptomic signature to oxidative stress exposure at the time of embryonic genome activation in bovine blastocysts. Mol. Reprod. Dev. 2013;80:297-314. doi: 10.1002/mrd.22162. PubMed PMID: 23426876.
Information Complémentaire
Mot(s) Clé(s)
amidines animals antioxidants blastocyst cattle gene expression profiling gene expression regulation, developmental genome oxidants oxidative stress reactive oxygen species time factors transcriptome
Résumé
In order to understand how in vitro culture affects embryonic quality, we analyzed survival and global gene expression in bovine blastocysts after exposure to increased oxidative stress conditions. Two pro-oxidant agents, one that acts extracellularly by promoting reactive oxygen species (ROS) production (0.01 mM 2,2'-azobis (2-amidinopropane) dihydrochloride [AAPH]) or another that acts intracellularly by inhibiting glutathione synthesis (0.4 mM buthionine sulfoximine [BSO]) were added separately to in vitro culture media from Day 3 (8-16-cell stage) onward. Transcriptomic analysis was then performed on resulting Day-7 blastocysts. In the literature, these two pro-oxidant conditions were shown to induce delayed degeneration in a proportion of Day-8 blastocysts. In our experiment, no morphological difference was visible, but AAPH tended to decrease the blastocyst rate while BSO significantly reduced it, indicating a differential impact on the surviving population. At the transcriptomic level, blastocysts that survived either pro-oxidant exposure showed oxidative stress and an inflammatory response (ARRB2), although AAPH induced higher disturbances in cellular homeostasis (SERPINE1). Functional genomics of the BSO profile, however, identified differential expression of genes related to glycine metabolism and energy metabolism (TPI1). These differential features might be indicative of pre-degenerative blastocysts (IGFBP7) in the AAPH population whereas BSO exposure would select the most viable individuals (TKDP1). Together, these results illustrate how oxidative disruption of pre-attachment development is associated with systematic up-regulation of several metabolic markers. Moreover, it indicates that a better capacity to survive anti-oxidant depletion may allow for the survival of blastocysts with a quieter metabolism after compaction.